首页 | 本学科首页   官方微博 | 高级检索  
检索        


Noise and signal decoupling in maximum-likelihood reconstructions and Metz filters for PET brain images
Authors:Liow J S  Strother S C
Institution:Department of Radiology, University of Minnesota and PET Imaging, VA Medical Center, Minneapolis, MN 55417, USA.
Abstract:Images reconstructed with the maximum-likelihood-by-expectation-maximization (ML) algorithm have lower noise in some regions, particularly low count areas, compared with images reconstructed with filtered backprojection (FBP). The use of statistically correct noise model coupled with the positivity constraint in the ML algorithm provides this noise improvement, but whether this model confers a general advantage for ML over FBP with no noise model and any reconstruction filter, is unclear. We have studied the quantitative impact of the correct noise model in the ML algorithm applied to simulated and real PET fluoro-deoxyglucose (FDG) brain images, given a simplified but accurate reconstruction model with spatially invariant resolution. For FBP reconstruction, several Metz filters were chosen and images with different resolution were obtained depending on the order (1-400) of the Metz filters. Comparisons were made based on the mean Fourier spectra of the projection amplitudes, the noise-power spectra, and the mean region-of-interest signal and noise behaviour in the images. For images with resolution recovery beyond the intrinsic detector resolution, the noise increased significantly for FBP compared with ML. This indicates that in the process of signal recovery using ML, the noise is decoupled from the signal. Such noise decoupling is not possible for FBP. However, for image resolution equivalent to or less than the intrinsic detector resolution, FBP with Metz filters of various orders can achieve a performance similar to ML. The significance of the noise decoupling advantage in ML is dependent on the reconstructed image resolution required for specific imaging tasks.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号