首页 | 本学科首页   官方微博 | 高级检索  
检索        


Characterization of a secretory proteinase of Candida parapsilosis and evidence for the absence of the enzyme during infection in vitro.
Authors:R Rüchel  B Bning  and M Borg
Institution:R Rüchel, B Böning, and M Borg
Abstract:The opportunistic yeastlike fungi of the genus Candida comprise three species which are proteolytic in vitro. Among them, C. albicans and C. tropicalis are of foremost medical importance. However, a strict correlation between extracellular proteolytic activity and virulence is opposed by the low virulence of the third proteolytic species, C. parapsilosis. We purified the secretory acid proteinase of C. parapsilosis (clinical isolate 265). The enzyme is a carboxyl proteinase (EC 3.4.23) like all other secretory Candida proteinases handled so far. Proteinase 265 is distinguished by a lower molecular weight (approximately 33,000); it has increased hydrophobicity, which accounts for inhibition of the enzyme by hemin, and required the presence of nonionic detergent in the initial steps of purification. The enzyme already undergoes alkaline denaturation at neutrality. Its activity is thus confined to the acid microenvironment of the fungal cell wall. Within this range, the enzyme may degrade immunoglobulins like immunoglobulin A1 (IgA1), IgA2, and secretory IgA. No indication was found for glycosylation of proteinase 265 and the related enzyme of C. albicans CBS 2730. However, the comparable proteinase of C. tropicalis 293 was identified as a manno protein. Antiserum against proteinase 265 cross-reacted strongly with corresponding enzymes from other Candida species. Antisera against proteinases of C. albicans and C. tropicalis reacted only weakly with proteinase 265. Thus, secretory Candida proteinases are likely to possess common and species-specific antigenic sites. In contrast to C. albicans, infection of phagocytes by C. parapsilosis 265 was not accompanied by secretion of fungal proteinase. This lack of induction of the enzyme under conditions of infection may account for the low virulence of most isolates of C. parapsilosis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号