首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effect of vitamin E supplementation on hypoxia-induced oxidative damage in male albino rats
Authors:Ilavazhagan G  Bansal A  Prasad D  Thomas P  Sharma S K  Kain A K  Kumar D  Selvamurthy W
Institution:Defence Institute of Physiology and Allied Sciences, Timarpur, Ministry of Defence, Delhi, India. defphysiol@satyam.net.in
Abstract:BACKGROUND: There is growing evidence that free radicals mediated oxidative injury due to inadequate oxygen availability is an important factor in various pathologies at high altitude. Since vitamin E is known to protect the cells from oxidative damage due to its potent antioxidant properties, the present study was carried out to explore the effect of vitamin E supplementation on various hematological and biochemical parameters in hypoxia-induced oxidative stress in albino rats. METHODS: The experiments were conducted on male albino rats by intermittently exposing them to a simulated altitude of 7,576 m (25,000 ft), daily for 6 h for 15 d at 32 +/- 2 degrees C. The control group was fed vehicle only (1% Tween 80) and the experimental group was given vitamin E (40 mg per rat x d(-1)) orally, 5 d prior to and during the period of hypoxic exposure. The variables studied include: hemoglobin, hematocrit, RBC deformability index, alpha-tocopherol level, malondialdehyde (MDA), reduced glutathione (GSH), oxidized glutathione (GSSG), lactate dehydrogenase (LDH) and protein level in blood/plasma and various tissues. RESULTS: Significant increase in hematocrit and hemoglobin and decrease in RBC deformability index was observed on exposure to hypoxia while vitamin E supplementation maintained them at the normal level. Hypoxia led to the decrease in plasma vitamin E and blood glutathione (GSH) level and two-fold increase in the plasma malondialdehyde (MDA) level. Vitamin E supplementation, on the other hand, resulted in less of an increase in MDA and increased the GSH concentration significantly. LDH activity, which was elevated on exposure to hypoxia, was arrested on vitamin E supplementation. CONCLUSION: The results indicate that vitamin E supplementation results in preventing oxidative damage due to high altitude stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号