首页 | 本学科首页   官方微博 | 高级检索  
     


Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells
Authors:Schubbert Suzanne  Lieuw Kenneth  Rowe Sara L  Lee Connie M  Li Xiaxin  Loh Mignon L  Clapp D Wade  Shannon Kevin M
Affiliation:Department of Pediatrics, University of California at San Francisco, 513 Parnassus Ave, HSE 302, San Francisco, CA 94143, USA.
Abstract:PTPN11 encodes the protein tyrosine phosphatase SHP-2, which relays signals from growth factor receptors to Ras and other effectors. Germline PTPN11 mutations underlie about 50% of Noonan syndrome (NS), a developmental disorder that is associated with an elevated risk of juvenile myelomonocytic leukemia (JMML). Somatic PTPN11 mutations were recently identified in about 35% of patients with JMML; these mutations introduce amino acid substitutions that are largely distinct from those found in NS. We assessed the functional consequences of leukemia-associated PTPN11 mutations in murine hematopoietic cells. Expressing an E76K SHP-2 protein induced a hypersensitive pattern of granulocyte-macrophage colony-forming unit (CFU-GM) colony growth in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL-3) that was dependent on SHP-2 catalytic activity. E76K SHP-2 expression also enhanced the growth of immature progenitor cells with high replating potential, perturbed erythroid growth, and impaired normal differentiation in liquid cultures. In addition, leukemia-associated SHP-2 mutations conferred a stronger phenotype than a germline mutation found in patients with NS. Mutant SHP-2 proteins induce aberrant growth in multiple hematopoietic compartments, which supports a primary role of hyperactive Ras in the pathogenesis of JMML.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Blood》浏览原始摘要信息
点击此处可从《Blood》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号