首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Cu Content on Performance of Sn-Zn-Cu Lead-Free Solder Alloys Designed by Cluster-Plus-Glue-Atom Model
Authors:Jialong Qiu  Yanzhi Peng  Peng Gao  Caiju Li
Affiliation:Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (J.Q.); (Y.P.)
Abstract:The mechanical properties of solder alloys are a performance that cannot be ignored in the field of electronic packaging. In the present study, novel Sn-Zn solder alloys were designed by the cluster-plus-glue-atom (CPGA) model. The effect of copper (Cu) addition on the microstructure, tensile properties, wettability, interfacial characterization and melting behavior of the Sn-Zn-Cu solder alloys were investigated. The Sn29Zn4.6Cu0.4 solder alloy exhibited a fine microstructure, but the excessive substitution of the Cu atoms in the CPGA model resulted in extremely coarse intermetallic compound (IMC). The tensile tests revealed that with the increase in Cu content, the tensile strength of the solder alloy first increased and then slightly decreased, while its elongation increased slightly first and then decreased slightly. The tensile strength of the Sn29Zn4.6Cu0.4 solder alloy reached 95.3 MPa, which was 57% higher than the plain Sn-Zn solder alloy, which is attributed to the fine microstructure and second phase strengthening. The spreadability property analysis indicated that the wettability of the Sn-Zn-Cu solder alloys firstly increased and then decreased with the increase in Cu content. The spreading area of the Sn29Zn0.6Cu0.4 solder alloy was increased by 27.8% compared to that of the plain Sn-Zn solder due to Cu consuming excessive free state Zn. With the increase in Cu content, the thickness of the IMC layer decreased owing to Cu diminishing the diffusion force of Zn element to the interface.
Keywords:Sn-Zn solder alloy   cluster-plus-glue-atom-model   mechanical property   microstructure   interfacial reaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号