首页 | 本学科首页   官方微博 | 高级检索  
检索        


Enhanced NO2 Sensing Performance of Graphene with Thermally Induced Defects
Authors:Namsoo Lim  Hyeonghun Kim  Yusin Pak  Young Tae Byun
Institution:1.Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (N.L.); (Y.P.);2.School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA;
Abstract:This paper demonstrates the enhanced NO2 sensing performance of graphene with defects generated by rapid thermal annealing (RTA). A high temperature of RTA (300–700 °C) was applied to graphene under an argon atmosphere to form defects on sp2 carbon lattices. The density of defects proportionally increased with increasing the RTA temperature. Raman scattering results confirmed significant changes in sp2 bonding. After 700 °C RTA, ID/IG, I2D/IG, and FWHM (full width at half maximum)(G) values, which are used to indirectly investigate carbon-carbon bonds’ chemical and physical properties, were markedly changed compared to the pristine graphene. Further evidence of the thermally-induced defects on graphene was found via electrical resistance measurements. The electrical resistance of the RTA-treated graphene linearly increased with increasing RTA temperature. Meanwhile, the NO2 response of graphene sensors increased from 0 to 500 °C and reached maximum (R = ~24%) at 500 °C. Then, the response rather decreased at 700 °C (R = ~14%). The results imply that rich defects formed at above a critical temperature (~500 °C) may damage electrical paths of sp2 chains and thus deteriorate NO2 response. Compared to the existing functionalization process, the RTA treatment is very facile and allows precise control of the NO2 sensing characteristics, contributing to manufacturing commercial low-cost, high-performance, integrated sensors.
Keywords:graphene  defects  rapid thermal annealing  nitrogen dioxide  gas sensor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号