首页 | 本学科首页   官方微博 | 高级检索  
     


Vitamin C prevents radiation-induced endothelium-dependent vasomotor dysfunction and de-endothelialization by inhibiting oxidative damage in the rat
Authors:On Y K  Kim H S  Kim S Y  Chae I H  Oh B H  Lee M M  Park Y B  Choi Y S  Chung M H
Affiliation:Cardiovascular Laboratory, Clinical Research Institute, Seoul National University College of Medicine, Seoul, Korea.
Abstract:1. The present study was undertaken to determine whether endothelial function or morphology was altered in aortic rings of rats after irradiation, to investigate the mechanism of radiation effects on the endothelium and to examine the effect of vitamin C treatment against radiation-induced damage of the endothelium. 2. Female Sprague-Dawley rats were randomized into four groups (control, radiation, radiation + vitamin C, radiation + vitamin C + NG-nitro-L-arginine methyl ester (L-NAME); n = 10 for each group and n = 7 for the control group) and were irradiated with 10 Gy of 137Cs as a radiation source. Segments of the thoracic aorta were obtained and isometric tension, levels of 8-hydroxydeoxyguanosine (OH-dG) and immunohistochemical staining were measured. 3. Irradiation significantly impaired the acetylcholine-induced vasodilation of aortic segments, an effect that could be prevented by pretreatment with vitamin C (500 mg/kg per day). This beneficial effect of vitamin C was abolished by the addition of L-NAME (100 microg/kg per day), an inhibitor of nitric oxide (NO) synthesis. Irradiation significantly increased the level of OH-dG in the aorta (1.02 +/- 0.27 vs 2.61 +/- 0.78 OH-dG/105 deoxyguanosine (dG) for control and irradiated tissues, respectively; P < 0.01), an increase that was prevented by vitamin C treatment (1.59 +/- 0.23 OH-dG/105 dG; P < 0.01). Irradiation caused significant de-endothelialization (von Willebrand factor (vWF) staining was 93 +/- 7 vs 100% in irradiated and control tissues, respectively; P < 0.05) and this was prevented by vitamin C treatment (vWF staining 98 +/- 3%; P < 0.05). 4. Radiation caused endothelial damage and impaired NO production through oxidative injury, resulting in a selective impairment of endothelial-dependent vasodilation that could be prevented by vitamin C, partly through anti-oxidant mechanisms.
Keywords:de-endothelialization    endothelium-dependent vasodilation    8-hydroxydeoxyguanosine    oxidative stress    radiation    vitamin C
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号