首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic control of postural sway by visual motion parallax
Authors:A. M. Bronstein  D. Buckwell
Affiliation:(1) MRC Human Movement and Balance Unit, Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG London, UK
Abstract:The purpose of this study was to establish whether visual motion parallax participates in the control of postural sway. Body sway was measured in ten normal subjects by photoelectric recordings of head movements and by force-plate posturography. Subjects viewed a visual display (“background”), which briefly moved (2 s) along the y (horizontal) axis, under three different conditions: (1) direct fixation of the background, (2) fixation of a stationary window frame in the foreground, and (3) fixation of the background in the presence of the window in the foreground (“through the window”). In response to background fixation, subjects swayed in the same direction as stimulus motion, but during foreground (window) fixation they swayed in the opposite direction. The earlier forces observed on the force platform occurred at circa 250 ms in both conditions. The results show that motion parallax generates postural responses. The direction of these parallax-evoked postural responses — opposite to other visually evoked postural responses reported so far — is appropriate for stabilizating posture in natural circumstances. The findings show that motion parallax is an important source of self-motion information and that this information participates in the process of automatic postural control. In the “fixating through the window” condition, which does not mimic visual conditions induced by body sway, no consistent postural responses were elicited. This implies that postural reactions elicited by visual motion are not rigid responses to optokinetic stimulation but responses to visual stimuli signalling self-motion.
Keywords:Visual motion  Parallax  Posture  Balance  Spatial orientation  Human
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号