首页 | 本学科首页   官方微博 | 高级检索  
检索        


Spike-mediated and graded inhibitory synaptic transmission between leech interneurons: evidence for shared release sites
Authors:Ivanov Andrei I  Calabrese Ronald L
Institution:Department of Biology, Emory University, Atlanta, GA 30322, USA. Andrei.Ivanov@emory.edu
Abstract:Inhibitory synaptic transmission between leech heart interneurons consist of two components: graded, gated by Ca2+ entering by low-threshold low-voltage-activated (LVA)] Ca channels and spike-mediated, gated by Ca2+ entering by high-threshold high-voltage-activated (HVA)] Ca channels. Changes in presynaptic background Ca2+ produced by Ca2+ influx through LVA channels modulate spike-mediated transmission, suggesting LVA channels have access to release sites controlled by HVA channels. Here we explore whether spike-mediated and graded transmission can use the same release sites and thus how Ca2+ influx by HVA and LVA Ca channels might interact to evoke neurotransmitter release. We recorded pre- and postsynaptic currents from voltage-clamped heart interneurons bathed in 0 mM Na+/5 mM Ca2+ saline. Using different stimulating paradigms and inorganic Ca channel blockers, we show that strong graded synaptic transmission can occlude high-threshold/spike-mediated synaptic transmission when evoked simultaneously. Suppression of LVA Ca currents diminishes graded release and concomitantly increases the ability of Ca2+ entering by HVA channels to release transmitter. Uncaging of Ca chelator corroborates that graded release occludes spike-mediated transmission. Our results indicate that both graded and spike-mediated synaptic transmission depend on the same readily releasable pool of synaptic vesicles. Thus Ca2+, entering cells through different Ca channels (LVA and HVA), acts to gate release of the same synaptic vesicles. The data argue for a closer location of HVA Ca channels to release sites than LVA Ca channels. The results are summarized in a conceptual model of a heart interneuron release site.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号