Properties of two voltage-activated potassium currents in acutely isolated juvenile rat dentate gyrus granule cells. |
| |
Authors: | H Beck E Ficker U Heinemann |
| |
Affiliation: | Institut für Neurophysiologie, Universit?t zu K?ln, Germany. |
| |
Abstract: | 1. The properties of outward currents were investigated in acutely isolated dentate gyrus granule cells at postnatal ages of day 5-7, 10-14, 18-24 (P5-7, P10-14, P18-24) and at adulthood (2-3 mo), with the use of the whole-cell patch-clamp technique. 2. Kinetic analysis and pharmacological properties showed that an A-type K+ current (IA) and a delayed rectifier current (IK) were present in these cells. 3. IA in P10-14 cells activated and inactivated rapidly with a decay time constant of 7.5 +/- 2.1 (SD) ms with command pulses to +30 mV. The removal of inactivation was monoexponential with a time constant of 23.1 ms (holding potential, -50 mV; conditioning voltage steps of varying duration to -110 mV). V 1/2 of the Boltzmann function describing steady-state inactivation was -65.1 +/- 1.8 mV with a slope factor of -6.0. IA was sensitive to 5 mM 4-aminopyridine (4-AP) but not to 10 mM tetraethylammonium (TEA). 4. IK in P10-14 cells displayed a voltage-dependent activation time constant (4.3 +/- 0.8 ms for command pulses to +30 mV and 16.2 +/- 2.4 for command pulses to -10 mV) and a double-exponential decay (time constants 194 +/- 21 and 1,625 +/- 254 ms). The rate constant of removal of inactivation was 332.1 ms. IK showed a reduction by 61.4 +/- 5.3% with 10 mM TEA and was partially blocked by 5 mM 4-AP in a subpopulation of cells. 5. Whereas IA remained stable over time, IK showed a substantial reduction of current amplitude by 67% after 30 min of cell perfusion through the patch pipette. The time course of this reduction was monoexponential with a time constant of 6.9 min and was partly due to a shift in V1/2 of the steady-state inactivation from -79.2 to -99.6 mV. 6. IA and IK remained stable with respect to kinetic properties during ontogenesis. However, the relative contribution and pharmacological properties of the investigated K+ currents varied with age. Although IA dominated in P5-7 cells, IK was prominent in most older cells. Five millimolars 4-AP reduced IA by 40.7 +/- 26.7% in P5-7 cells and blocked IA completely in 80% of investigated P10-14 cells. Similar changes were observed for the effects of 4-AP on IK (18.7% depression in the age group P5-8, 46.1% in the age group P10-14, and 45.7% in adult animals). |
| |
Keywords: | |
|
| 点击此处可从《Journal of neurophysiology》浏览原始摘要信息 |
|
点击此处可从《Journal of neurophysiology》下载全文 |
|