首页 | 本学科首页   官方微博 | 高级检索  
检索        


Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy
Authors:Bailey Christine K  Andriola Isabella F M  Kampinga Harm H  Merry Diane E
Institution:Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 208 Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA 19107, USA.
Abstract:Spinal and bulbar muscular atrophy (SBMA) is one of a growing number of neurodegenerative diseases caused by a polyglutamine-encoding CAG trinucleotide repeat expansion, and is caused by an expansion within exon 1 of the androgen receptor (AR) gene. The family of polyglutamine diseases is characterized by the presence of ubiquitinated, intranuclear inclusions associated with molecular chaperones and 26S proteasome components, although the role of these inclusions in the pathogenesis of polyglutamine diseases remains unclear. The over-expression of molecular chaperones of the Hsp70 and Hsp40 families has been shown to modulate inclusion frequency and cellular toxicity. We developed a cell culture system which enables the quantitative analysis of the effects of molecular chaperones on the biochemical properties of an expanded repeat AR. Using this approach, we demonstrate that Hsp70 and its co-chaperone Hsp40 not only increase expanded repeat AR solubility, but function to enhance the degradation of expanded repeat AR through the proteasome. Furthermore, our studies indicate that these molecular chaperones significantly decrease the half-life of an expanded repeat AR. Molecular chaperone enhancement of protein degradation points to the modulation of molecular chaperones as a potential therapeutic target for polyglutamine diseases.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号