Abstract: | ![]() This study sought to determine where drugs that are known to alter sensorimotor reactivity measured with the acoustic startle reflex ultimately act within the acoustic startle pathway. To do this, startle was elicited either acoustically or electrically within various nuclei believed to comprise the acoustic startle pathway. Direct infusion of serotonin into the subarachnoid space of the lumbar spinal cord increased acoustic startle and startle elicited electrically through the ventral cochlear nucleus (VCN) to a comparable degree. Subconvulsant doses of strychnine increased startle elicited acoustically or electrically through either the VCN or the nucleus reticularis pontis caudalis (RPC), pointing to a spinal locus of action of strychnine after systemic administration. In marked contrast, the dopamine agonists d-amphetamine and apomorphine consistently increased acoustic startle but actually depressed startle elicited electrically through the VCN or the RPC. These later results suggest that dopamine agonists increase sensorimotor reactivity measured with acoustic startle by acting on sensory rather than motor parts of the reflex arc. |