首页 | 本学科首页   官方微博 | 高级检索  
     


Potassium and sodium channels in human malignant glioma cells
Authors:T Brismar  V P Collins
Affiliation:

Department of Clinical Neurophysiology and the Ludwig Institute for Cancer Research, Karolinska Hospital, Stockholm, Sweden

Abstract:Human malignant glioma cells from 5 different cell lines were voltage clamped and examined for the presence of depolarization-activated ion channels. Outward K-currents were elicited at membrane potentials > 40 mV, which had two main components, one which was delayed and blocked by externally applied tetraethylammonium (TEA, 10 mM), and another which was instantaneous and insensitive to TEA in the outside solution. The proportion of the two K-current components varied between cell lines. An increase in Ca2+] in the range 0–4 mM, decreased the leak conductance and shifted the activation of the instantaneous outward K-current towards more positive potenttials. Mg2+, Zn2+ and Co2+ had qualitatively similar effects. Patch recordings with 150–160 mM K+-solution on both sides of the membrane revealed that the delayed outward K-current was carried through large conductance (250–300 pS) channels. Changes in free Ca2+]i from 0 to 2 × 10?8 M increased the activation of the large conductance K-channel. Small Na-currents were identified in cells from one cell line (Tp-378MG). The Na-conductance rangedfrom 0.5 to 7.5 nS in 25% of the cells, and was less than 0.5 nS in 75%. The Na-channels were activated and inactivated at 30–40 mV more positive potentials than in the mammalian peripheral nerve. Tetrodotoxin (100 mM) blocked gNa almost completely.
Keywords:Calcium-activated potassium-channel  Big conductance channel  Sodium channel  Glial cell  Malignant glioma  Human
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号