首页 | 本学科首页   官方微博 | 高级检索  
检索        


Studies on the lithium transport across the red cell membrane
Authors:Jochen Duhm  Bernhard F Becker
Institution:1. Physiologisches Institut, Universit?t München, Pettenkoferstrasse 12, D-8000, München 2, Federal Republic of Germany
Abstract:In studies on Li+ net-transport across the human red cell membrane following results were obtained: 1. In K+- and Na+-free choline chloride media, Li+ is transported into the erythrocytes against an electrochemical gradient. This Li+ uphill transport as well as Li+ downhill transport into the cells is inhibited by ouabain, ATP-depletion, and by external K+ and Na+. The effects of K+ and Na+ are relieved at high Li+ concentrations. 2. Ouabain-sensitive Li+ uptake, determined at 10 mM external Na+, does not obey simple Michaelis-Menten kinetics and exhibits a maximum at about pH 7. 3. Ouabain-resistant Li+ downhill transport into erythrocytes increases with rising pH. It is comprised of a saturating component and a component linearly dependent on external Li+. The linear component is partly inhibited by dipyridamole and accelerated by bicarbonate. The bicarbonate effect can be completely blocked by dipyridamole, phlorizin and phenylbutazone. 4. Li+ release is not inhibited by ouabain, ATP-depletion and external K+. It increases with external Na+ concentration, tending to saturate at 150 mM Na+. Na+-independent Li+ release is stimulated by bicarbonate. It is concluded that ouabain-sensitive Li+ uptake is mediated at the K+-site(s) of the Na+-K+ pump. Li+, K+ and Na+ appear to compete for a common site (or sites). The stimulation of Li+ transfer by bicarbonate and the inhibition by dipyridamole suggest a participation of anionic species in ouabain-resistant Li+ transfer. The Na+-dependent Li+ release and the "saturating component" of Li+ uptake are ascribed to the Na+-dependent Li+ countertransport system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号