首页 | 本学科首页   官方微博 | 高级检索  
     


Opposite presynaptic regulations by glutamate through NMDA receptors of dopamine synthesis and release in rat striatal synaptosomes
Authors:Jean-Marie Desce, Ge   rard Godeheu, Thierry Galli, Jacques Glowinski,Andre    Che   ramy
Affiliation:

aINSERM U 114, Colle`ge de France, Chaire de Neuropharmacologie, 11, Place Marcelin-Berthelot, 75231 Paris Cedex 05, France

Abstract:Purified striatal synaptosomes were superfused continuously with L-[3,5-3H]tyrosine to measure simultaneously the synthesis ([3H]water formed during the conversion of [3H]tyrosine into [3H]DOPA) and the release of [3H]dopamine ([3H]DA). Glutamate (10−3 M) and NMDA (10−3 M, in the absence of Mg2+) stimulated the release of [3H]DA, but they reduced the efflux of [3H]water. This reduction of [3H]DA synthesis was blocked by 2-amino-5-phosphonovalerate indicating the involvement of NMDA receptors. Although D,L--amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA) and kainate stimulated the release of [3H]DA, they did not affect its synthesis. The glutamate-evoked inhibition of [3H]DA synthesis was prevented when synaptosomes were superfused continuously with adenosine adenosine deaminase plus quinpirole, a treatment which markedly reduces the phosphorylation of tyrosine hydroxylase by cAMP dependent protein kinase. The opposite effects of glutamate on [3H]DA synthesis and release were mimicked by ionomycin (10−6 M). It is proposed that both an activation of a cyclic nucleotide phosphodiesterase and a dephosphorylation of tyrosine hydroxylase linked to the influx of calcium through NMDA receptors is responsible for the inhibition of dopamine synthesis by glutamate and that calcineurin could play a critical role in these processes.
Keywords:Dopamine synthesis   Dopamine release   Synaptosome   Striatum   NMDA receptor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号