首页 | 本学科首页   官方微博 | 高级检索  
     


Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (zeta/lambda) activities
Authors:Tremblay F  Lavigne C  Jacques H  Marette A
Affiliation:Department of Physiology, Laval University Hospital Research Center, Quebec, Canada.
Abstract:The cellular mechanism by which high-fat feeding induces skeletal muscle insulin resistance was investigated in the present study. Insulin-stimulated glucose transport was impaired ( approximately 40-60%) in muscles of high fat-fed rats. Muscle GLUT4 expression was significantly lower in these animals ( approximately 40%, P < 0.05) but only in type IIa-enriched muscle. Insulin stimulated the translocation of GLUT4 to both the plasma membrane and the transverse (T)-tubules in chow-fed rats. In marked contrast, GLUT4 translocation was completely abrogated in the muscle of insulin-stimulated high fat-fed rats. High-fat feeding markedly decreased insulin receptor substrate (IRS)-1-associated phosphatidylinositol (PI) 3-kinase activity but not insulin-induced tyrosine phosphorylation of the insulin receptor and IRS proteins in muscle. Impairment of PI 3-kinase function was associated with defective Akt/protein kinase B kinase activity (-40%, P < 0.01) in insulin-stimulated muscle of high fat-fed rats, despite unaltered phosphorylation (Ser473/Thr308) of the enzyme. Interestingly, basal activity of atypical protein kinase C (aPKC) was elevated in muscle of high fat-fed rats compared with chow-fed controls. Whereas insulin induced a twofold increase in aPKC kinase activity in the muscle of chow-fed rats, the hormone failed to further increase the kinase activity in high fat-fed rat muscle. In conclusion, it was found that GLUT4 translocation to both the plasma membrane and the T-tubules is impaired in the muscle of high fat-fed rats. We identified PI 3-kinase as the first step of the insulin signaling pathway to be impaired by high-fat feeding, and this was associated with alterations in both Akt and aPKC kinase activities.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号