首页 | 本学科首页   官方微博 | 高级检索  
检索        


Intracellular Action of Spermine on Neuronal Ca2+ and K+ Currents
Authors:Herbert Drouin  Anton Hermann
Institution:University of Salzburg, Department of Animal-Physiology, Institute of Zoology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
Abstract:Intra-and extracellular effects of the polyamine spermine on electrical activity and membrane currents of identified neurons in the abdominal ganglion of Aplysia californica were studied under current-and voltage-clamp conditions. Lonophoretic injection of spermine reduced the amplitude of action potentials and altered their time course as well as spontaneous discharge activity. Investigation of membrane currents showed that intracellular spermine suppressed the total outward current but increased the inward rectifier current. After separation of ion currents it was found that the voltage-activated, delayed K+ outward current and the Ca2+ inward current were reduced by intracellular spermine in a dose- and voltage-dependent manner. The block of the K+ current can be described by a voltage-dependent reaction, where one spermine molecule binds to one channel. The binding constant Kb, at zero voltage, and the effective valency, zδ, had values of 176/M and 0.41 for cell R-15, 223/M and 0.64 for cell L-11, and 137/M and 0.42 for cell L-3. Apparently, more than one spermine cation is needed to block one Ca2+ channel, since the coefficient n, which absorbs the molecularity and cooperativity of the reaction, had non-integral values between 1.34 and 2.22. The binding constant Kb and the effective valency zδ had values of 265/M and 0.64 for cell R-15, 821M and 0.56 for cell L-4, and 263/M and 0.51 for cell L-6. Intracellular spermine also blocked the Ca2+-activated K+ current induced by ionophoretic Ca2+-injections, but increased the current at prolonged times after spermine injection. Extracellular spermine had no effect on electrical activity or on membrane currents. The results indicate that intracellular spermine affects the electrical discharge activity of neurons by acting as a blocker and/or modulator at voltage-dependent membrane conductances.
Keywords:polyamine  neuron  voltage-dependent ion channels  delayed K+ current  Ca2+ current  Ca2+-activated K+ current              Aplysia
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号