首页 | 本学科首页   官方微博 | 高级检索  
     


Glycine-immunoreactive neurons in the developing spinal cord of the sea lamprey: comparison with the gamma-aminobutyric acidergic system
Authors:Villar-Cerviño Verona  Holstein Gay R  Martinelli Giorgio P  Anadón Ramón  Rodicio María Celina
Affiliation:Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain.
Abstract:The development and cellular distribution of the inhibitory neurotransmitter glycine in the spinal cord of the sea lamprey were studied by immunocytochemistry and double immunofluorescence and compared with the distribution of gamma-aminobutyric acid (GABA). Results in lamprey embryos and prolarvae reveal that the appearance of glycine-immunoreactive (-ir) spinal neurons precedes that of GABA-ir neurons. Throughout development, glycine-ir cells in the lateral and dorsomedial gray matter of the spinal cord are more numerous than the GABA-ir cells. Only a subset of these neurons shows colocalization of GABA and glycine, suggesting that they are primarily disparate neuronal populations. In contrast, most cerebrospinal fluid (CSF)-contacting neurons of the central canal walls are strongly GABA-ir, and only a portion of them are faintly glycine-ir. Some edge cells (lamprey intraspinal mechanoreceptors) were glycine-ir in larvae and adults. The glycine-ir and GABA-ir neuronal populations observed in the adult spinal cord were similar to those found in larvae. Comparison of glycine-ir and GABA-ir fibers coursing longitudinally in the spinal cord of adult lamprey revealed large differences in diameter between these two types of fiber. Commissural glycine-ir fibers appear in prolarvae and become numerous at larval stages, whereas crossed GABA-ir are scarce. Taken together, results in this primitive vertebrate indicate that the spinal glycinergic cells do not arise by biochemical shift of preexisting GABAergic cells but instead suggest that glycine is present in the earliest circuitry of the developing lamprey spinal cord, where it might act transiently as an excitatory transmitter.
Keywords:immunocytochemistry  confocal laser scanning microscopy  colocalization  development
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号