首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of intense exercise training on endothelium-dependent exercise-induced vasodilatation
Authors:Franke  Stephens  III
Abstract:To determine whether intense exercise training affects exercise-induced vasodilatation, six subjects underwent 4 weeks of handgrip training at 70% of maximal voluntary contraction. Exercise forearm vascular conductance (FVC) responses to an endothelium-dependent vasodilator (acetylcholine, ACH; 15, 30, 60 μg min?1) and an endothelium-independent vasodilator (sodium nitroprusside, SNP; 1·6, 3·2, 6·4 μg min?1) and FVC after 10 min of forearm ischaemia were determined before and after training. Training elicited significant (P<0·001) increases in grip strength (43·4 ± 2·3 vs. 64·1 ± 3·5 kg, before vs. after, mean ± SEM), forearm circumference (26·7 ± 0·4 vs. 27·9 ± 0·4 cm) and maximal FVC (0·4630 ± 0·0387 vs. 0.6258 ± 0·0389 units, P<0·05). Resting FVC did not change significantly with training (0·0723 ± 0·0162 vs. 0.0985 ± 0·0171 units, P>0·4), but exercise FVC increased (0·1330 ± 0·0190 vs. 0.2534 ± 0·0387 units, P<0·05). Before and after the training, ACH increased exercise FVC above the control (no drug) exercise FVC, whereas SNP did not. Training increased (P<0·05) the exercise FVC responses to ACH (0·3344 ± 0·1208 vs. 0.4303 ± 0·0858 units, before vs. after training, 60 μg min?1) and SNP (0·2066 ± 0·0849 vs. 0.3172 ± 0·0628 units, 6·4 μg min?1). However, these increases were due to the increase in control (no drug) exercise FVC, as the drug-associated increase in exercise FVC above control did not differ between trials (P>0·6). These results suggest that exercise FVC is increased by both exercise training and stimulating the release of endothelium-dependent vasodilators. However, training does not affect the vascular response to these vasodilators.
Keywords:blood flow  hyperaemia  nitric oxide  physical conditioning  skeletal muscle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号