首页 | 本学科首页   官方微博 | 高级检索  
检索        


Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: early responses of osteocalcin and type I collagen.
Authors:D Pavlin  R Zadro  J Gluhak-Heinrich
Institution:Department of Orthodontics, The University of Texas Health Science Center at San Antonio, 78284-7910, USA. pavlin@uthscsa.edu
Abstract:Mechanical loading is an essential environmental factor in skeletal homeostasis, but the response of osteoblast-associated genes to mechanical osteogenic signal is largely unknown. This study uses our recently characterized in vivo osteoinductive model to analyze the sequence of stimulation and the time course of expression of osteoblast-associated genes in mechanically loaded mouse periodontium. Temporal pattern of regulation of osteocalcin (OC), alkaline phosphatase (ALP), and type I collagen (collagen I) was determined during mechanically-induced osteoblast differentiation in vivo, using a mouse tooth movement model earlier shown to induce bone formation and cell-specific regulation of genes in osteoblasts. The expression of target genes was determined after 1, 2, 3, 4, and 6 days of orthodontic movement of the mouse first molar. mRNA levels were measured in the layer of osteoblasts adjacent to the alveolar bone surface, using in situ hybridization and a relative quantitative video image analysis of cell-specific hybridization intensity, with non-osseous mesenchymal periodontal cells as an internal standard. After 24 hours of loading, the level of OC in osteoblasts slightly decreased, followed by a remarkable 4.6-fold cell-specific stimulation between 1 and 2 days of treatment. The high level expression of OC was maintained throughout the treatment with a peak 7-fold stimulation at day 4. The expression of collagen I gene was not significantly affected after 1 day, but it was stimulated 3-fold at day 2, and maintained at a similar level through day 6. The ALP gene, which we previously found to be mechanically stimulated during the first 24 hours, remained enhanced from 1.8- to 2.2-fold throughout the 6 days of treatment. Thus, in an intact alveolar bone compartment, mechanical loading resulted in a defined temporal sequence of induction of osteoblast-associated genes. Stimulation of OC 48 h after the onset of loading (and 24 h prior to deposition of osteoid) temporally coincided with that of collagen I, and was preceded for 24 h by an enhancement of ALP. Identification of OC as a mechanically responsive gene induced in functionally active osteoblasts in this study is consistent with its potential role in limiting the rate of mechanically-induced bone modeling. Furthermore, these results show that temporal progression of mechanically-induced osteoblast phenotype in this in vivo model occurs very rapidly. This suggests that physiologically relevant mechanical osteoinductive signal in vivo is targeting a population of committed osteoblast precursor cells that are capable of rapidly responding by entering a differentiation pathway and initiating an anabolic skeletal adaptation process.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号