首页 | 本学科首页   官方微博 | 高级检索  
检索        

Morphological characterization of microspheres, films and implants prepared from poly(lactide-co-glycolide) and ABA triblock copolymers: is the erosion controlled by degradation, swelling or diffusion?
摘    要:

收稿时间:30 March 2000

Morphological characterization of microspheres,films and implants prepared from poly(lactide-co-glycolide) and ABA triblock copolymers: is the erosion controlled by degradation,swelling or diffusion?
Authors:C Witt  T Kissel
Institution:Department of Pharmaceutics and Biopharmacy, Philipps University, Marburg, Germany.
Abstract:Erosion of biodegradable parenteral delivery systems (PDS) based on ABA copolymers consisting of poly(L-lactide-co-glycolide) (PLGA) A-blocks attached to polyethylene oxide (PEO) B-blocks, or PLGA is important for the release of macromolecular drugs. The degradation behavior of four types of PDS, namely extruded rods, tablets, films and microspheres, was studied with respect to molecular weight, mass, polymer composition and shape and microstructure of the PDS. For each device the onset time of bulk erosion (t(on)) and the apparent rate of mass loss (k(app)) were calculated. In the case of PLGA, the t(on) was 16.2 days for microspheres, 19.2 days for films and 30.1 days for cylindrical implants and tablets. The k(app) was 0.04 days(-1) for microspheres, 0.09 days(-1) for films, 0.11 days(-1) for implants and 0.10 days(-1) for tablets. The degradation rates were in the same range irrespective of the geometry and the micrographs of eroding PDS demonstrated pore formation; therefore, a complex pore diffusion mechanism seems to control the erosion of PLGA devices. In contrast, PDS based on ABA copolymers showed swelling, followed by a parallel process of molecular weight degradation and polymer erosion, independent of the geometry. The contact angles of ABA films increased either with decreasing PEO content or with increasing chain length of the PEO B-blocks. In summary, the insertion of a hydrophilic B-block leads to an erosion controlled by degradation of ABA copolymers, whereas for PLGA a complex pore diffusion of degradation products controls the rate of bulk erosion.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号