首页 | 本学科首页   官方微博 | 高级检索  
检索        


Ciprofloxacin Encapsulation Into Giant Unilamellar Vesicles: Membrane Binding and Release
Authors:Nóra Kaszás  Tamás Bozó  Marianna Budai  Pál Gróf
Institution:1. Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary;2. Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
Abstract:This study aimed at investigating some respects of binding and interaction between water-soluble drugs and liposomal carrier systems depending on their size and lamellarity. As model substance, ciprofloxacin hydrochloride (CPFX) was incorporated into giant unilamellar vesicles (GUVs) to study their CPFX encapsulation/binding capacity. To characterize molecular interactions of various CPFX microspecies with lipid bilayer, zeta potential and electron paramagnetic resonance (EPR) spectroscopy measurements were performed. The increase of the zeta potential at pH 5.4 but no change at pH 7.2 was interpreted in terms of the CPFX microspecies' distribution at the two pH values. EPR observations showed an increased fluidity because of CPFX binding to GUVs. We worked out and applied a three-compartment dialysis model to separately determine the rate of drug diffusion through the liposomal membrane. Equilibrium dialysis showed (a) different permeation of CPFX through the membranes of GUVs and multilamellar vesicles (MLVs), with characteristic half-lives of 54.4 and 18.1 h, respectively; and (b) increased retention of CPFX in case of GUVs with released amounts of 70% compared with about 97% in case of MLVs. Our results may provide further details for efficient design of liposomal formulations incorporating water-soluble drugs. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:694–705, 2013
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号