首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mutations in the ND5 subunit of complex I of the mitochondrial DNA are a frequent cause of oxidative phosphorylation disease
Authors:Blok M J  Spruijt L  de Coo I F M  Schoonderwoerd K  Hendrickx A  Smeets H J
Institution:Department of Clinical Genetics, University Hospital, Maastricht, The Netherlands. rien.blok@gen.unimaas.nl
Abstract:

Background

Detection of mutations in the mitochondrial DNA (mtDNA) is usually limited to common mutations and the transfer RNA genes. However, mutations in other mtDNA regions can be an important cause of oxidative phosphorylation (OXPHOS) disease as well.

Objective

To investigate whether regions in the mtDNA are preferentially mutated in patients with OXPHOS disease.

Methods

Screening of the mtDNA for heteroplasmic mutations was performed by denaturing high‐performance liquid chromatography analysis of 116 patients with OXPHOS disease but without the common mtDNA mutations.

Results

An mtDNA sequence variant was detected in 15 patients, 5 of which were present in the ND5 gene. One sequence variant was new and three were known, one of which was found twice. The novel sequence variant m.13511A→T occurred in a patient with a Leigh‐like syndrome. The known mutation m.13513G→A, associated with mitochondrial encephalomyopathy lactic acidosis and stroke‐like syndrome (MELAS) and MELAS/Leigh/Leber hereditary optic neuropathy overlap syndrome, was found in a relatively low percentage in two patients from two different families, one with a MELAS/Leigh phenotype and one with a MELAS/chronic progressive external ophthalmoplegia phenotype. The known mutation m.13042G→A, detected previously in a patient with a MELAS/myoclonic epilepsy, ragged red fibres phenotype and in a family with a prevalent ocular phenotype, was now found in a patient with a Leigh‐like phenotype. The sequence variant m.12622G→A was reported once in a control database as a polymorphism, but is reported in this paper as heteroplasmic in three brothers, all with infantile encephalopathy (Leigh syndrome) fatal within the first 15?days of life. Therefore, a causal relationship between the presence of this sequence variant and the onset of mitochondrial disease cannot be entirely excluded at this moment.

Conclusions

Mutation screening of the ND5 gene is advised for routine diagnostics of patients with OXPHOS disease, especially for those with MELAS‐ and Leigh‐like syndrome with a complex I deficiency.Mitochondria are key for many cellular processes. One of the most important mechanisms is oxidative phosphorylation (OXPHOS) resulting in the production of cellular energy in the form of ATP. The OXPHOS system consists of five multiprotein complexes (I–V) and two mobile electron carriers (coenzyme q and cytochrome c) embedded in the lipid bilayer of the mitochondrial inner membrane.1,2 The mitochondrial genome encodes 13 essential polypeptides of the OXPHOS system and the necessary RNA machinery (two ribosomal RNAs and 22 transfer RNAs (tRNA)). The remaining structural proteins and proteins involved in import, assembly and mitochondrial DNA (mtDNA) replication are encoded by the nucleus and specifically targeted to the mitochondria. OXPHOS disease is characterised by a wide variety of clinical symptoms, in which one or more organs can be involved, and by genetic and clinical heterogeneity.2,3 With an estimated total number of about 1500 nuclear mitochondrial genes of which 600 have been identified so far,4 this complicates the process of identification of the underlying genetic defect. Although mutations in the mtDNA tRNA genes have been reported far more often than other mutations in mtDNA protein‐coding genes,2 this figure is highly biased by a preferential screening of these genes.In this study, the complete mtDNA was screened for heteroplasmic mutations using denaturing high‐performance liquid chromatography (DHPLC) analysis in a group of 116 unrelated patients suspected for OXPHOS disease but without the common mutations for mitochondrial encephalomyopathy, lactic acidosis and stroke‐like syndrome (MELAS) m.3243A→G, myoclonic epilepsy, ragged red fibres (MERRF) m.8344A→G, Leigh/neuropathy, ataxia and retinitis pigmentosa m.8993T→G/C or large deletions. For this group of patients, we report that the ND5 gene is a commonly mutated gene.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号