首页 | 本学科首页   官方微博 | 高级检索  
检索        


Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo
Authors:Taekeun Kim  Won Chan Oh  Joon Ho Choi  Hyung-Bae Kwon
Institution:aMax Planck Florida Institute for Neuroscience, Jupiter, FL, 33458;;bMax Planck Institute of Neurobiology, 82152 Martinsried, Germany
Abstract:During cortical circuit development in the mammalian brain, groups of excitatory neurons that receive similar sensory information form microcircuits. However, cellular mechanisms underlying cortical microcircuit development remain poorly understood. Here we implemented combined two-photon imaging and photolysis in vivo to monitor and manipulate neuronal activities to study the processes underlying activity-dependent circuit changes. We found that repeated triggering of spike trains in a randomly chosen group of layer 2/3 pyramidal neurons in the somatosensory cortex triggered long-term plasticity of circuits (LTPc), resulting in the increased probability that the selected neurons would fire when action potentials of individual neurons in the group were evoked. Significant firing pattern changes were observed more frequently in the selected group of neurons than in neighboring control neurons, and the induction was dependent on the time interval between spikes, N-methyl-D-aspartate (NMDA) receptor activation, and Calcium/calmodulin-dependent protein kinase II (CaMKII) activation. In addition, LTPc was associated with an increase of activity from a portion of neighboring neurons with different probabilities. Thus, our results demonstrate that the formation of functional microcircuits requires broad network changes and that its directionality is nonrandom, which may be a general feature of cortical circuit assembly in the mammalian cortex.Layer 2/3 neurons in the barrel cortex play a central role in integrative cortical processing (14). Neurons in layer 2/3 are interconnected with each other, and their axons and dendrites traverse adjacent barrel areas (5, 6). Recent calcium (Ca2+) imaging studies in awake animals showed that two very closely localized layer 2/3 pyramidal neurons are independently activated by different whiskers (7). In addition, adjacent layer 2/3 neurons have different receptive field properties; signals from different whiskers may emerge on different spines in the same neurons (8, 9). These findings suggest that the organization of functional subnetworks in somatosensory layer 2/3 is heterogeneous at the single-cell level and that microcircuits are assembled at a very fine scale (10). In vivo whole-cell recording experiments have also shown that most, but not all, layer 2/3 pyramidal neurons receive subthreshold depolarization by single-whisker stimulation with much broader receptive fields than neurons in layer 4 (11, 12). These anatomical and functional data suggest that electric signals relayed to the cortex by whisker activation are greatly intermingled within layer 2/3 neurons, and that studying the mechanisms by which these layer 2/3 neurons make connections may be critical for understanding the cortical network organizing principles underlying somatosensation.A previous modeling study suggested that spike timing-dependent plasticity (STDP) can lead to the formation of functional cortical columns and activity-dependent reorganization of neural circuits (1316). However, how spikes arising in multiple neurons in vivo influence their connectivity is poorly understood. In this study using two-photon glutamate photolysis, which allowed us to control neuronal activity in a spatially and temporally precise manner, we examined activity-dependent cellular mechanisms during network rearrangement generated by repetitive spike trains in a group of neurons. We found that repetitive spikes on a group of neurons induced the probability of the neurons firing together. This circuit plasticity required spiking at short intervals among neurons and is expressed by N-methyl-D-aspartate (NMDA) receptor- and Calcium/calmodulin-dependent protein kinase II (CaMKII)-dependent long-lasting connectivity changes. The probability of firing was differentially affected by the order of the spike sequence but was not dependent on the physical distance between neurons. Thus, our data show that neuronal connectivity within a functional subnetwork is established in not only a preferred but also a directional manner.
Keywords:spike timing-dependent plasticity  layer 2/3 cortex  neuronal connectivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号