首页 | 本学科首页   官方微博 | 高级检索  
检索        


The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization
Authors:Harbers Gregory M  Healy Kevin E
Institution:Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3107, USA.
Abstract:Polystyrene surfaces grafted with a nonfouling interfacial interpenetrating polymer network (IPN) of poly(acrylamide-co-ethylene glycol/acrylic acid) p(AAm-co-EG/AAc)] were modified with several peptide ligands adapted from bone sialoprotein (BSP). IPNs were modified with both single ligands and ligand blends to study the correlation between a simple metric, ligand-receptor adhesion strength, and the extent of matrix mineralization for osteoblast like cells (rat calvarial osteoblasts). The ligands studied included RGD cell-binding CGGNGEPRGDTYRAY (l-RGD), CGGEPRGDTYRA (s2-RGD), CGPRGDTYG (lc-RGD), cyclic(CGPRGDTYG) (c-RGD), and CGGPRGDT (s-RGD)], heparin binding (CGGFHRRIKA), and collagen binding (CGGDGEAG) peptides, with the appropriate controls. Adhesion strength scaled with ligand density (1-20 pmol/cm(2)) and was dependent on ligand type with the following trend: l-RGD > s2-RGD approximately c-RGD > s-RGD approximately lc-RGD > FHRRIKA approximately DGEA. Independent of ligand density, % matrix mineralization varied with ligand type resulting in the following trend: lc-RGD > s2-RGD > l-RGD approximately c-RGD > s-RGD > FHRRIKA. The Tyr (Y) residue immediately following the RGD cell-binding domain proved to be critical for stable cell proliferation and mineralization, since removal of this residue resulted in erratic cell attachment and mineralization behavior. The minimum BSP sequence necessary for strong adhesion and extensive mineralization was CGGEPRGDTYRA; the minimal sequence suitable for extensive mineralization but lacking strong adhesion was CGPRGDTYG. The cyclic peptide (c-RGD) had much greater adhesion strength compared to its linear counterpart (lc-RGD). The calculated characteristic adhesion strength (F(70)) obtained using a centrifuge adhesion assay proved to be a poor metric for predicting % mineralized area; however, in general, surfaces possessing a F(70) > 100g promoted extensive matrix mineralization. Percent mineralization and number of mineralized nodules scaled with number of cells seeded suggesting a critical dependence on the initial number of osteoprogenitors in culture. This study demonstrates matrix mineralization dependence on ligand type, ligand density, and adhesion strength. The high-throughput character of these surfaces allowed efficient investigation of multiple ligands at multiple densities providing an excellent tool for studying ligand-receptor interactions under normal cell culture conditions with serum present.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号