首页 | 本学科首页   官方微博 | 高级检索  
     


Cholinergic Modulation of Electrogenic Ion Transport in Different Regions of the Rat Small Intestine
Authors:S. A. PRZYBORSKI  R. J. LEVIN
Abstract:Acetylcholine acting via muscarinic receptors located in the intestinal mucosa controls ion and fluid transport. This study examined the pathway(s) by which cholinergic receptors mediate secretion in rat isolated duodenum, jejunum and ileum using the short-circuit current (Isc) as an index of electrogenic Cl? secretion. Carbachol and bethanechol induced electrogenic Cl? transport which was insensitive to the neural blocker tetrodotoxin, indicating their direct action on the enterocytes. Functional characterization of electrogenic secretion activated via muscarinic receptors on jejunal and ileal enterocytes was achieved by use of selective muscarinic antagonists in the presence of tetrodotoxin. In both regions the rank order of potency of these compounds (atropine > 4-diphenylacetoxy-N-piperidine methiodide (4-DAMP) > hexahydro-sila-difenidol (HHSiD) > pirenzepine > methoctramine) indicated the M3 receptor subtype. Secretion activated by the muscarinic agonist 4-[[(3-chlorophenyl)amino]carbonyl]-N,N,N-trimethyl-2-butyn-1-ammonium chloride (McN-A-343) was sensitive to tetrodotoxin and pirenzepine but not to the ganglionic blocker, hexamethonium, indicating the M1 receptor subtype on post ganglionic neurons. Regional differences for bethanechol-activated secretion showed an increasing gradient in secretory capacity (Isc max) in a proximal-to-distal direction along the small intestine. Responses to McN-A-343 also showed regional differences but these were unlike those of bethanechol. These results show that cholinomimetic-induced electrogenic Cl? secretion in rat isolated small intestine appears to be mediated by two dissimilar populations of muscarinic receptor: M3 muscarinic receptors positioned on enterocytes and M1 muscarinic receptors sited on submucosal neurons.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号