首页 | 本学科首页   官方微博 | 高级检索  
检索        


Characterization of cannabinoid-binding sites in zebrafish brain
Authors:Rodriguez-Martin Ivan  de Velasco Ezequiel Marron Fdez  Rodriguez Raquel E
Institution:Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Neurociencias de Castilla y León, University of Salamanca, Spain.
Abstract:We present here the pharmacological characterization of cannabinoid-binding sites in zebrafish brain homogenates using radiolabeled binding techniques. The nonselective agonist 3H]-CP55940 binds with high affinity (KD = 0.50+/-0.06 nM and a Bmax = 1047+/-36.01 fmol/mg protein), displaying one binding site. The slightly CB2 selective agonist 3H]-WIN55212-2 also binds with high affinity to zebrafish brain membranes displaying two different binding sites with affinities KD1 = 0.35+/-0.09 nM and KD2 = 105.81+/-66.36 nM. Competition binding assays using 3H]-WIN55212-2 and several unlabeled ligands were performed. WIN55212-2 significantly displaced the tritiated ligand binding showing the two binding sites observed with its tritiated homologous, while the slightly selective CB1 cannabinoid ligand HU-210, the nonselective cannabinoid ligand CP55940 and the endogenous cannabinoid ligand anandamide presented one binding site. Also, the functionality of these cannabinoid sites was analyzed using the known 35S]GTPgammaS assay. All the agonist used presented an agonist profile and the rank order for potency was HU-210 > WIN55212-2 > CP55940 >anandamide. Our results provide evidence that, although some of the typical cannabinoid ligands for mammalian receptors do not fully recognize the cannabinoid-binding sites in zebrafish brain, the activity of the endogenous zebrafish cannabinoid system might not significantly differ from that displayed by the cannabinoid system described in other species. Hence the study of zebrafish cannabinoid activity may contribute to an understanding of the endogenous cannabinoid system in higher vertebrates.
Keywords:Zebrafish  Cannabinoid receptors  Cannabinoid ligands  Saturation binding  Competition binding  G protein activation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号