首页 | 本学科首页   官方微博 | 高级检索  
     


A mechanism of S-(1,2,3,4,4-pentachloro-1,3-butadienyl)--cysteine toxicity to rabbit renal proximal tubules
Authors:Rick G. Schnellmann   Edward A. Lock  Lazaro J. Mandel
Abstract:S-(1,2,3,4,4-Pentachloro-1,3-butadienyl)--cysteine (PCBC) has been identified as the penultimate compound responsible for hexachlorobutadiene-induced nephrotoxicity. The primary goal of these studies was to determine the mechanism of PCBC-induced toxicity in rabbit renal proximal tubules by examining the early changes in tubular physiology. PCBC (20–500 μ) induced a specific sequence of toxic events. Following 15 min of exposure, 200 μ PCBC increased basal (25%) and ouabain-insensitive (78%) respiration. This was followed by a decrease in basal (46%), nystatin-stimulated (54%), and ouabain-insensitive (21%) respiration and a decrease in glutathione content (79%). Finally, there was a decrease in cell viability as measured by a decrease in LDH retention at 60 min. Direct probing of mitochondrial function revealed that the initial increase in respiration resulted from the uncoupling of oxidative phosphorylation, while the late changes in respiration appeared to result from gross mitochondrial damage characterized by inhibited state 3 respiration, inhibited cytochrome c-cytochrome oxidase, and inhibited electron transport. Studies utilizing tubules with decreased glutathione content revealed that glutathione plays little if any role in the early events of PCBC-induced toxicity. These results suggest that PCBC-induced mitochondrial dysfunction may initiate the renal proximal tubule injury.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号