Mechanical Properties of Polyurethane Adhesive Bonds in a Mineral Wool-Based External Thermal Insulation Composite System for Timber Frame Buildings |
| |
Authors: | Ewa Sudoł ,Ewelina Kozikowska |
| |
Affiliation: | Construction Materials Engineering Department, Instytut Techniki Budowlanej, 00-611 Warszawa, Poland; |
| |
Abstract: | This paper aims to provide a preliminary assessment of polyurethane adhesive applicability as an alternative to conventional cement-based adhesives used to fix thermal insulation materials to substrates concerning mineral wool-based external thermal insulation composite systems. Currently, polyurethane adhesives are only used in expanded polystyrene-based ETICS. This study discusses the suitability of polyurethane adhesive for ETICS with lamella mineral-wool for timber frame buildings. Bond strength, shear strength and shear modulus tests were conducted. In addition, microstructure and apparent density were analysed. Mechanical properties were analysed in terms of the influence of substrate type and thermal and moisture conditions, taking into account solutions typical for sheathing on timber frame (oriented strand boards (OSB), fibre-reinforced gypsum boards (FGB) and cement-bonded particleboards (CPB)), as well as limit conditions for adhesive application. It was found that PU adhesive can achieve adhesion, both to MW and OSB, and FGB and CPB at ≥80 kPa, which is considered satisfactory for PU adhesives for EPS-based ETICS. Favourable shear properties were also obtained. There was no significant effect of sheathing type on the properties considered, but the influence of temperature and relative humidity, in which the bonds were made, was spotted. The results obtained can be considered promising in further assessing the usefulness of PU adhesives for MW-based ETICS. |
| |
Keywords: | external thermal insulation systems mechanical properties of bonds polyurethane adhesive timber frame building bond strength shear properties |
|
|