Identification of the proximate peroxisome proliferator(s) derived from di(2-ethylhexyl) phthalate |
| |
Authors: | A M Mitchell J C Lhuguenot J W Bridges C R Elcombe |
| |
Affiliation: | 1. Department of Translational Medical Sciences, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy;2. Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy;3. Department of Experimental Medical Science, Lund University, Lund, Sweden |
| |
Abstract: | A primary rat hepatocyte culture system was utilized to determine the proximate peroxisome proliferator(s) derived from di(2-ethylhexyl) phthalate (DEHP). DEHP was administered to rats and the urinary metabolites were identified and isolated. The major metabolites were those resulting from initial omega- or omega - 1-carbon oxidation of the mono(2-ethylhexyl) phthalate (MEHP) moiety. These metabolites, together with MEHP and 2-ethylhexanol, were added to primary rat hepatocyte cultures and the effect on peroxisomal enzyme activity was determined. The omega-carbon oxidation products [mono(3-carboxy-2-ethylpropyl) phthalate (I) and mono(5-carboxy-2-ethylpentyl) phthalate (V)] and 2-ethylhexanol produced little or no effect on CN- -insensitive palmitoyl-CoA oxidation (a peroxisomal marker). MEHP and the omega - 1-carbon oxidation products [mono-(2-ethyl-5-oxohexyl) phthalate (VI) and mono(2-ethyl-5-hydroxyhexyl) phthalate (IX)] produced a large (7- to 11-fold) induction of peroxisomal enzyme activity. Similar structure-activity relationships were observed for the induction of cytochrome P-450-mediated lauric acid hydroxylase and increase in cellular coenzyme A content. This identification of the proximate proliferators will aid in the elucidation of the mechanism by which DEHP causes proliferation of peroxisomes in the rodent liver. Oral administration of MEHP (150 or 250 mg/kg) to male guinea pigs did not produce hepatic peroxisome proliferation. Addition of MEHP (0 to 0.5 mM) or one of the "active" proliferators in the rat (metabolite IX, 0 to 0.5 mM) to primary guinea pig hepatocyte cultures also failed to produce an induction of peroxisomal beta-oxidation. Possible reasons for this species difference are discussed. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|