首页 | 本学科首页   官方微博 | 高级检索  
检索        


In vitro characterization of the glucuronidation pathways of licochalcone A mediated by human UDP-glucuronosyltransferases
Authors:Yang-Liu Xia  Tong-Yi Dou  Xia Lv
Institution:1. School of Life Science and Medicine, Dalian University of Technology, Panjin, China;2. College of Life Science, Dalian Minzu University, Dalian, China
Abstract:
  1. This study aimed to characterize the glucuronidation pathway of licochalcone A (LCA) in human liver microsomes (HLM).

  2. HLM incubation systems were employed to catalyze the formation of LCA glucuronide. The glucuronidation activity of commercially recombinant UDP-glucuronosyltransferase (UGT) isoforms toward LCA was screened. Kinetic analysis was used to identify the UGT isoforms involved in the glucuronidation of LCA in HLM.

  3. LCA could be metabolized to two monoglucuronides in HLM, including a major monoglucuronide, namely, 4-O-glucuronide, and a minor monoglucuronide, namely, 4′-O-glucuronide. Species-dependent differences were observed among the glucuronidation profiles of LCA in liver microsomes from different species. UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, UGT1A10 and UGT2B7 participated in the formation of 4-O-glucuronide, with UGT1A9 exhibiting the highest catalytic activity in this biotransformation. Only UGT1A1 and UGT1A3 were involved in the formation of 4′-O-glucuronide, exhibiting similar reaction rates. Kinetic analysis demonstrated that UGT1A9 was the major contributor to LCA-4-O-glucuronidation, while UGT1A1 played important roles in the formation of both LCA-4-O- and 4′-O-glucuronide.

  4. UGT1A9 was the major contributor to the formation of LCA-4-O-glucuronide, while UGT1A1 played important roles in both LCA-4-O- and 4′-O-glucuronidation.

Keywords:Licochalcone A  UDP-glucuronosyltransferases (UGTs)  glucuronidation  human liver microsomes (HLM)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号