首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidative stress in the aging murine olfactory bulb: redox proteomics and cellular localization
Authors:Vaishnav Radhika A  Getchell Marilyn L  Poon H Fai  Barnett Kara R  Hunter Samuel A  Pierce William M  Klein Jon B  Butterfield D Allan  Getchell Thomas V
Affiliation:Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA.
Abstract:A recent proteomics analysis from our laboratory demonstrated that several oxidative stress response proteins showed significant changes in steady-state levels in olfactory bulbs (OBs) of 20- vs. 1.5-month-old mice. Oxidative stress may result in protein oxidation. In this study, we investigated two forms of protein oxidative modification in murine OBs: carbonylation and nitration. Redox proteomics with two-dimensional gel electrophoresis, Western blotting, protein digestion, and mass spectrometry was used to quantify total and specific protein carbonylation and to identify differentially carbonylated proteins and determine the carbonylation status of previously identified proteins in OBs of 1.5- and 20-month-old mice. Immunohistochemistry was used to demonstrate the relative intensity and localization of protein nitration in OBs of 1.5-, 6-, and 20-month-old mice. Total protein carbonylation was significantly greater in OBs of 20- vs. 1.5-month-old mice. Aldolase 1 (ALDO1) showed significantly more carbonylation in OBs from 20- vs. 1.5-month-old mice; heat shock protein 9A and dihydropyrimidinase-like 2 showed significantly less. Several previously investigated proteins were also carbonylated, including ferritin heavy chain (FTH). Nitration, identified by 3-nitrotyrosine immunoreactivity, was least abundant at 1.5 months, intermediate at 6 months, and greatest at 20 months and was localized primarily in blood vessels. Proteins that were specific targets of oxidation were also localized: ALDO1 in astrocytes of the granule cell layer and FTH in mitral/tufted cells. These results indicate that specific carbonylated proteins, including those in astrocytes and mitral/tufted neurons, and nitrated proteins in the vasculature are molecular substrates of age-related olfactory dysfunction.
Keywords:carbonylation  3‐nitrotyrosine  sensory  immunohistochemistry  protein oxidation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号