首页 | 本学科首页   官方微博 | 高级检索  
     

应用人工神经网络预测胎儿体重的研究
引用本文:田敬霞,张景祥,陈子江. 应用人工神经网络预测胎儿体重的研究[J]. 现代妇产科进展, 2008, 17(3): 182-184
作者姓名:田敬霞  张景祥  陈子江
作者单位:1. 山东大学附属省立医院生殖医学中心,济南,250021;山东大学附属济南市中心医院妇产科
2. 济南大学信息科学与工程学院
3. 山东大学附属省立医院生殖医学中心,济南,250021
基金项目:山东省重大科技专项-可持续发展示范工程资助课题
摘    要:目的:探讨人工神经网络预测新生儿出生体重的价值。方法:将226例足月、单胎、无妊娠合并症及并发症的初产妇分为训练组(100例,男女胎儿各50例)和验证组(126例,男女胎儿各63例),训练组分别选取不同参数构建3个神经网络,(1)联合参数法:用孕妇身高、体重、腹围、宫高及B超下胎儿双顶径、股骨长和羊水池最大深度作为输入节点;(2)孕妇参数法,用孕妇身高、体重、腹围和宫高作为输入节点;(3)胎儿参数法,用B超下胎儿双顶径、股骨长和羊水池最大深度作为输入节点。神经网络构建完成后以126例验证组来分别测试3种网络的准确性和误差。结果:联合参数法准确率最高为84.94%,母亲参数法为83.45%,胎儿参数法为80.80%。结论:人工神经网络预测胎儿体重有很好的应用前景。选取合适的孕妇及胎儿参数建立网络可提高预测的准确性。

关 键 词:胎儿体重  预测  人工神经网络
文章编号:1004-7379(2008)03-0182-03
修稿时间:2007-11-03

A study on estimating fetal weight using artificial neural networks
Tian Jingxia,Zhang Jingxiang,Chen Zijiang. A study on estimating fetal weight using artificial neural networks[J]. Current Advances In Obstetrics and Gynecology, 2008, 17(3): 182-184
Authors:Tian Jingxia  Zhang Jingxiang  Chen Zijiang
Affiliation:Tian Jingxia,Zhang Jingxiang,Chen Zijiang.(1. The Reproductive Medical Center, Provincial Hospital Affiliated to Shandong University,Jinan 250021 ;2. Department of Gynecology and Obstetrics ,Jinan Central Hospital affiliated to Shandong University;3. Information Science and Engineering College of Jinan University)
Abstract:Objective:To investigate the effect of artificial neural networks in predicting fetal weight. Methods:The 226 cases of full-term singleton pregnancy without comphcation were divided into two groups ,100 samples (female and male fetuses each 50) for training and 126 samples ( female and male fetuses each 63) for testing. Three methods of neural networks are composed: ( 1 ) joint parameter method using the height,weight,abdominal circumference and uterine fundal height of pregnant women as well as the biparietal diameter(BPD) ,femur length(FL) and amniotic fluid pool depth ( AFD ) of fetuses under B-ultrasonography; ( 2 ) maternal pararneter method using the height,weight,abdominal circumference and uterine fundal height of pregnant women; (3)fetal parameter method using the BPD, FL and AFD of fetuses;the neural networks were then trained and tested upon the above samples. Results:Among the three methods, the joint parameter method had the highest predicting accuracy of 84.94% ,the accuracy of maternal parameter method and the fetal parameter method were 83.45% and 80. 80% respectively. Conclusion:The fetal weight estimation using artificial neural networks shows a potential prospect of application. A subtle combination of maternal and fetal parameters is critical to build up an effective network.
Keywords:Fetal weight  Prediction  Artificial neural network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号