Reverse cholesterol transport in mice expressing simian cholesteryl ester transfer protein |
| |
Authors: | Stein O Dabach Y Hollander G Ben-Naim M Halperin G Stein Y |
| |
Affiliation: | Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel. ystein@hadassah.org.il |
| |
Abstract: | The role of cholesteryl ester transfer protein (CETP) in atherogenesis remains ambiguous, as both pro and antiatherogenic effects have been described. Expression of CETP increases HDL-cholesteryl ester turnover, but there is no direct evidence whether CETP mobilizes cholesterol in vivo. The rate of cholesterol removal injected into a leg muscle as cationized low density lipoprotein (cat-LDL) was compared in CETP transgenic and control mice. Four days after injection the exogenous cholesterol mass retained in muscle was 65% in CETP transgenic and 70% of injected dose in controls; it decreased to 52-54% by day 8 and negligible amounts remained on day 28. The cat-LDL was labeled with either 3H-cholesterol oleate (3H-CE) or 3H-cholesteryl oleoyl ether (3H-COE), a nonhydrolyzable analog of 3H-CE. After injection of 3H-CE cat-LDL, clearance of 3H-cholesterol had a t(1/2) of 4 days between day 4 and 8 but there was little loss of 3H-COE between day 4 and 51. Liver radioactivity on day 4 was 1.7% in controls and 3.4% in CETP transgenics; it was 2.8 and 4.6%, respectively, on day 8. 3H-COE in liver accounted for 60% of label in CETP transgenics. In conclusion, high levels of plasma CETP in mice do not enhance reverse cholesterol transport in vivo but may act on extracellularly located cholesteryl ester. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|