首页 | 本学科首页   官方微博 | 高级检索  
检索        


Differential activation of astrocytes and microglia during post-natal development of dopaminergic neuronal death in the weaver mouse
Authors:Douhou Aicha  Debeir Thomas  Michel Patrick P  Stankovski Lea  Oueghlani-Bouslama Lamia  Verney Catherine  Raisman-Vozari Rita
Institution:INSERM U289, H?pital de la Salpêtrière, 47 Boulevard de l'H?pital, 75013 Paris, France.
Abstract:In order to understand the relationship between astrocytes, microglia and injured neurons, we studied the weaver mutant mouse. One of the main characteristics of this mutant is the progressive degeneration of the dopaminergic (DA) nigrostriatal pathway that starts around postnatal day 15 (P15), in the substantia nigra pars compacta (SNpc) and progresses until adult age (P60). In the present paper, we analysed the relationship between astroglial and microglial cells within DA neurons in the nigrostriatal system of homozygous weaver mice, at different postnatal ages corresponding to specific stages of the DA neuronal loss. The activation of astrocytes was found to be an early event in weaver DA denervation, appearing massively at the onset of DA neuronal loss in the SNpc at P15. Astrocytes remained activated in the adult brain even after the slowing down of the neuronal death process. Interestingly, in the ventral tegmental area, where no DA neuronal death could be detected, a profound, permanent astrogliosis was also observed in adult animals. In contrast, an activation of microglial cells was transiently observed in the SNpc but only at the postnatal age when maximal neuronal death was observed (P30). Lastly, in the striatum, where there was a massive loss of DA nerve terminals, neither astrogliosis nor microglial activation was detected. Hence, the reaction of astrocytes and microglial cells to progressive and spontaneous DA neuronal death showed different temporal kinetics, suggesting a different role for these two cell types in the DA neurodegenerative process in the weaver mouse.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号