首页 | 本学科首页   官方微博 | 高级检索  
检索        


Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals
Authors:Tomoyuki Takaku  Hirohisa NagahoriYoshihisa Sogame
Institution:Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
Abstract:A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose of 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of phenyl-U-14C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up 14C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than Km (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments.
Keywords:PBPK  physiologically based pharmacokinetics  Km  Michaelis&ndash  Menten constant  Vmax  maximum velocity  PPO  protoporphyrinogen oxidase  NMR  nuclear magnetic resonance  MS  mass spectrometry  PK  pharmacokinetics  LSC  liquid scintillation counter  Pt  partition coefficient  Ksi  stomach-intestine transfer rate constant  Kfe  fecal excretion rate constant  Ki  intestinal uptake rate constant  Fa  fraction absorbed
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号