首页 | 本学科首页   官方微博 | 高级检索  
     


A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells
Authors:Yang Qiang  Peng Jiang  Guo Quanyi  Huang Jingxiang  Zhang Li  Yao Jun  Yang Fei  Wang Shenguo  Xu Wenjing  Wang Aiyuan  Lu Shibi
Affiliation:Key Laboratory of People Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
Abstract:We developed a natural, acellular, 3-D interconnected porous scaffold derived from cartilage extracellular matrix (ECM). Human cartilage was physically shattered, then decellularized sequentially with use of hypotonic buffer, TritonX-100, and a nuclease solution and made into a suspension. The scaffold was fabricated by simple freeze-drying and cross-linking techniques. On histology, scaffolds showed most of the ECM components after removal of the cell fragments, and scanning electron microscopy revealed a 3-D interconnected porous structure. Cellular viability assay revealed no cytotoxic effects. In vitro study showed that the novel scaffold could provide a suitable 3-D environment to support the adheration, proliferation and differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) to chondrocytes in culture with chondrogenic medium after 21 days. Chondrogenically induced BMSCs labeled with fluorescent dye PKH26 were then grown on scaffolds and implanted subcutaneously into nude mice. Four weeks later, cartilage-like tissue formed, with positive staining for Safranin O, tuoluidine blue and collagen II. Cells in the samples seemed to confirm that they originated from the labeled BMSCs, as confirmed by in vivo fluorescent imaging and immunofluorescence examination. In conclusion, the cartilage ECM-derived porous scaffold shows potential as biomaterial for cartilage tissue engineering, and PKH26 fluorescent labeling and in vivo fluorescent imaging can be useful for cell tracking and analyzing cell-scaffold constructs in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号