首页 | 本学科首页   官方微博 | 高级检索  
     

人工智能与脑网络组融合助力意识障碍预后预测研究
引用本文:宋明. 人工智能与脑网络组融合助力意识障碍预后预测研究[J]. 临床神经外科杂志, 2020, 17(1): 8-10
作者姓名:宋明
作者单位:中国科学院自动化研究所, 北京,100190
基金项目:国家自然科学基金(31870984)
摘    要:意识障碍(DOC)患者的预后预测对临床治疗及患者家属都有重要意义。但目前的预后预测模型的准确度不高,敏感性和特异性均较低。本研究在基于病因、年龄和病程作为重要预测指标的基础上,融合使用基于脑功能磁共振影像的患者脑功能网络特征,利用人工智能和机器学习算法,研发出了一个预测意识障碍患者能否苏醒的计算模型,准确率达到了88%。

关 键 词:脑网络  人工智能  意识障碍  预后预测  功能磁共振

Artificial intelligence and brain network research improve the prognostications of disorders of consciousness
SONG Ming. Artificial intelligence and brain network research improve the prognostications of disorders of consciousness[J]. Journal of Clinical Neurosurgery, 2020, 17(1): 8-10
Authors:SONG Ming
Affiliation:(Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
Abstract:Although some indicators and models have been proposed to prognosticate disorders of consciousness(DOC),any single method when used alone carries a high risk of false prediction.This study aimd to develop a multidomain prognostic model that combined functional brain networks with clinical characteristics to predict one year outcomes at the single-patient level.The model discriminate patients who would later recover consciousness from those who would not with an accuracy of around 88%.
Keywords:brain network  artificial intelligence  disorders of consciousness  prognostications  fMRI
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号