首页 | 本学科首页   官方微博 | 高级检索  
检索        


Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths
Authors:Todd L Johnston MD  Eldin E Karaikovic MD  PhD  Eugene P Lautenschlager PhD  David Marcu BS
Institution:Cedar Valley Medical Specialists, 1753 West Ridgeway Avenue, Suite 103B, Waterloo, IA 50701, USA.
Abstract:BACKGROUND CONTEXT: Although successful clinical use of cervical pedicle screws has been reported, anatomical studies have shown the possibility for serious iatrogenic injury. However, there are only a limited number of reports on the biomechanical properties of these screws which evaluate the potential benefits of their application. PURPOSE: To investigate if the pull-out strengths after cyclic uniplanar loading of cervical pedicle screws are superior to lateral mass screws. STUDY DESIGN: An in vitro biomechanical study. METHODS: Twenty fresh-frozen disarticulated human vertebrae (C3-C7) were randomized to receive both a 3.5 mm cervical pedicle screw and lateral mass screw. The screws were cyclically loaded 200 times in the sagittal plane. The amount of displacement was recorded every 50 cycles. After cyclical loading, the screws were pulled and tensile load to failure was recorded. Bone density was measured in each specimen and maximum screw insertion torque was recorded for each screw. RESULTS: During loading the two screw types showed similar stability initially, however the lateral mass screws rapidly loosened compared to the pedicle screws. The rate of loosening in the lateral mass screws was widely variable, while the performance of the pedicle screws was very consistent. The pullout strengths were significantly higher for the cervical pedicle screws (1214 N vs. 332 N) and 40% failed by fracture of the pedicle rather than screw pullout. Pedicle screw pullout strengths correlated with both screw insertion torque and specimen bone density. CONCLUSIONS: Cervical pedicle screws demonstrated a significantly lower rate of loosening at the bone-screw interface, as well as higher strength after fatigue testing. These biomechanical strengths may justify their use in certain limited clinical applications.
Keywords:Cervical spine  Cervical pedicle screw  Pullout strengths  Cervical spine instrumentation  Lateral mass screw
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号