首页 | 本学科首页   官方微博 | 高级检索  
     


Transglutaminase crosslinked gelatin as a tissue engineering scaffold
Authors:Yung C W  Wu L Q  Tullman J A  Payne G F  Bentley W E  Barbari T A
Affiliation:Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
Abstract:Gelatin is one of the most commonly used biomaterials for creating cellular scaffolds due to its innocuous nature. In order to create stable gelatin hydrogels at physiological temperatures (37 degrees C), chemical crosslinking agents such as glutaraldehyde are typically used. To circumvent potential problems with residual amounts of these crosslinkers in vivo and create scaffolds that are both physiologically robust and biocompatible, a microbial transglutaminase (mTG) was used in this study to enzymatically crosslink gelatin solutions. HEK293 cells encapsulated in mTG-crosslinked gelatin proliferated at a rate of 0.03 day(-1). When released via proteolytic degradation with trypsin, the cells were able to recolonize tissue culture flasks, suggesting that cells for therapeutic purposes could be delivered in vivo using an mTG-crosslinked gelatin construct. Upon submersion in a saline solution at 37 degrees C, the mTG-crosslinked gelatin exhibited no mass loss, within experimental error, indicating that the material is thermally stable. The proteolytic degradation rate of mTG-crosslinked gelatin at RT was slightly faster than that of thermally-cooled (physically-crosslinked) gelatin. Thermally-cooled gelatin that was subsequently crosslinked with mTG resulted in hydrogels that were more resistant to proteolysis. Degradation rates were found to be tunable with gelatin content, an attribute that may be useful for either long-time cell encapsulation or time-released regenerative cell delivery. Further investigation showed that proteolytic degradation was controlled by surface erosion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号