首页 | 本学科首页   官方微博 | 高级检索  
检索        


Dynamic model of the short-term regulation of arterial pressure in the cat
Authors:Prof R Burattini  P Reale  P Borgdorff  N Westerhof
Institution:(1) Department of Electronics and Automatica, University of Ancona, Via Brecce Bianche, 60131 Ancona, Italy;(2) Laboratory for Physiology, Free University Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
Abstract:The purpose of this study was to characterise the dynamics of the short-term control of arterial pressure in the cat with the aid of a model consisting of a nonlinear negative-feedback control system. The arterial system was described by a three element windkessel model (peripheral resistance, R, aortic characteristic impedance, Rc, and total arterial compliance, C). The resistance regulation was represented by a second-order system with static gain GR, a damping factor σ and an undamped natural frequency ωn. The resistance gain, GR, and the windkessel parameters were obtained from measurements of aortic and venous pressures and cardiac output in two steady states. The parameters σ and ωn were estimated from mean pressure and mean flow during the transient from control to the new steady state. Pressure reductions averaged 10 per cent and resistance changes averaged 12 per cent. Average windkessel model parameters in the control condition were: C=(25·9±6·1) 10−6 g−1 cm4 s2, Rc=(2·51±0·53) 103 g cm−4 s−1, R=(40·9±9·8) 103 g cm−4 s−1. Average estimates of parameters of the resistance regulator were: GR=(4·14±2·38) 10−3 min ml−1, ωn = 1·0 ± 1·0 rad s−1, σ=0·41±0·19. A satisfactory fit was found between model predicted and measured pressure. The results suggest that the dynamic short-term control of pressure is underdamped and oscillatory. The amplitude of these oscillations is affected by arterial compliance, suggesting an interaction between the arterial system and short-term resistance regulation.
Keywords:Arterial compliance  Baroreflex  Mathematical model  Negative-feedback control  Open and closed loop  Parameter estimation  Peripheral resistance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号