首页 | 本学科首页   官方微博 | 高级检索  
检索        


Perfusion-based fMRI: insights from animal models
Authors:Silva Afonso C
Institution:Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA. silvaa@ninds.nih.gov
Abstract:Modern functional neuroimaging techniques, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and optical imaging of intrinsic signals (OIS), rely on a tight coupling between neural activity and cerebral blood flow (CBF) to visualize brain activity using CBF as a surrogate marker. Because CBF is a uniquely defined physiological parameter, fMRI techniques based on CBF contrast have the advantage of being specific to tissue signal change, and the potential to provide more direct and quantitative measures of brain activation than blood oxygenation level-dependent (BOLD)- or cerebral blood volume (CBV)-based techniques. The changes in CBF elicited by increased neural activity are an excellent index of the magnitude of electrical activity. Increases in CBF are more closely localized to the foci of increased electrical activity, and occur more promptly to the stimulus than BOLD- or CBV-based contrast. In addition, CBF-based fMRI is less affected by confounds from venous drainage common to BOLD. Animal studies of brain activation have yielded considerable insights into the advantages of CBF-based fMRI. Based on results provided by animal studies, CBF fMRI may offer a means of better assessing the magnitude, spatial extent, and temporal response of neural activity, and may be more specific to tissue state. These properties are expected to be particularly useful for longitudinal and quantitative fMRI studies.
Keywords:functional magnetic resonance imaging  arterial spin labeling  animal models  cerebral blood flow  spatial resolution  temporal resolution
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号