首页 | 本学科首页   官方微博 | 高级检索  
检索        


Longitudinal and shear mode ultrasound propagation in human skull bone
Authors:White P J  Clement G T  Hynynen K
Institution:Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA. white@bwh.harvard.edu
Abstract:Recent studies have attempted to dispel the idea of the longitudinal mode being the only significant mode of ultrasound energy transport through the skull bone. The inclusion of shear waves in propagation models has been largely ignored because of an assumption that shear mode conversions from the skull interfaces to the surrounding media rendered the resulting acoustic field insignificant in amplitude and overly distorted. Experimental investigations with isotropic phantom materials and ex vivo human skulls demonstrated that, in certain cases, a shear mode propagation scenario not only can be less distorted, but at times allowed for a substantial (as much as 36% of the longitudinal pressure amplitude) transmission of energy. The phase speed of 1.0-MHz shear mode propagation through ex vivo human skull specimens has been measured to be nearly half of that of the longitudinal mode (shear sound speed = 1500 +/- 140 m/s, longitudinal sound speed = 2820 +/- 40 m/s), demonstrating that a closer match in impedance can be achieved between the skull and surrounding soft tissues with shear mode transmission. By comparing propagation model results with measurements of transcranial ultrasound transmission obtained by a radiation force method, the attenuation coefficient for the longitudinal mode of propagation was determined to between 14 Np/m and 70 Np/m for the frequency range studied, while the same for shear waves was found to be between 94 Np/m and 213 Np/m. This study was performed within the frequency range of 0.2 to 0.9 MHz.
Keywords:Ultrasound  Skull  Shear  Longitudinal
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号