首页 | 本学科首页   官方微博 | 高级检索  
     


Serotonin receptors 5-HT1A and 5-HT3 reduce hyperexcitability of dorsal horn neurons after chronic spinal cord hemisection injury in rat
Authors:Bryan?C.?Hains,William?D.?Willis,Claire?E.?Hulsebosch  author-information"  >  author-information__contact u-icon-before"  >  mailto:cehulseb@utmb.edu"   title="  cehulseb@utmb.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Department of Anatomy and Neurosciences, and Marine Biomedical Institute, University of Texas Medical Branch, 301 University Boulevard, 77555-043, Galveston, TX, USA,;(2) Department of Neurology, and PVA-EPVA Center for Neuroscience and Regeneration Research, Yale University School of Medicine, 06516, West Haven, CT, USA,
Abstract:Spinal cord injury (SCI) results in abnormal pain syndromes in humans. In a rodent model of SCI, T13 spinal hemisection results in allodynia and hyperalgesia due in part to interruption of descending pathways, including serotonergic (5-HT) systems, that leads to hyperexcitability of dorsal horn neurons. To characterize further the role of 5-HT and 5-HT receptor subtypes 5-HT(1A) and 5-HT(3) in neuronal activation after hemisection, we have examined the responsiveness of dorsal horn neurons to a variety of innocuous and noxious peripheral stimuli. Male Sprague-Dawley rats, 150-175 g, were spinally hemisected (n=40) at T13 and allowed 4 weeks for development of mechanical allodynia and thermal hyperalgesia. Animals then underwent electrophysiologic recording and the results were compared with those from sham controls (n=15). Evoked responses of convergent dorsal horn neurons (n=224 total) at L3-L5 to innocuous and noxious peripheral stimuli were characterized after administration of vehicle, 5-HT (25, 50, 100, and 200 microg), 5-HT (100 microg) in conjunction with the selective 5-HT(1A) antagonist WAY 100135 (100 microg), the 5-HT(3) antagonist MDL 72222 (100 microg), the selective 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 150 microg), or the 5-HT(3) agonist 2-Me-5HT (75 microg), with or without pretreatment with antagonists; all treatments were delivered topically onto the cord adjacent to the recording electrode. In hemisected animals, increased responsiveness of convergent cells to all peripheral stimuli was observed bilaterally when compared to controls. No changes in ongoing background activity were present. In control animals, only the highest dose of 5-HT (200 microg) was sufficient to reduce evoked activity, whereas in hemisected animals a concentration-dependent decrease in response was observed. In hemisected animals, both 5-HT(1A) and 5-HT(3) receptor antagonism reduced the effectiveness of 5-HT, restoring elevated evoked activity by up to 70% at the doses tested. Administration of 5-HT(1A) and 5-HT(3) receptor agonists also decreased hyperexcitability, effects prevented by pretreatment with corresponding antagonists. These results demonstrate the development of denervation supersensitivity to 5-HT following SCI, corroborate behavioral studies showing the effectiveness of 5-HT in reducing allodynia and hyperalgesia after SCI, and contribute to a mechanistic understanding of the role of 5-HT receptor subtypes in chronic central pain.
Keywords:Serotonin Nociception Hemisection Spinal cord injury
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号