首页 | 本学科首页   官方微博 | 高级检索  
     


Reduced bactericidal activity and nitric oxide production in metallothionein-deficient macrophages in response to lipopolysaccharide stimulation
Authors:Itoh Norio  Shibayama Hiroshi  Kanekiyo Masako  Namphung Dunkokkuruad  Nakanishi Tsuyoshi  Matsuyama Akiko  Odani Tomoyuki  Tanaka Keiichi
Affiliation:Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan. n-itoh@phs.osaka-u.ac.jp
Abstract:This study was designed to investigate bactericidal activity of and nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated peritoneal exudate macrophages (Mvarphi) from metallothionein (MT)-null mice. Control Mvarphi had a bactericidal effect on Staphylococcus aureus, but MT-null Mvarphi had significantly lower activity. NO is an important factor in the bactericidal function of Mvarphi. LPS-stimulated MT-null Mvarphi produced less NO than those of control mice. LPS-stimulated Mvarphi produce cytokines such as tumor necrosis factor (TNF)-alpha. TNF-alpha activate Mvarphi and stimulates NO production. We evaluated NO production by TNF-alpha-stimulated Mvarphi. MT-null Mvarphi produced less NO in response to TNF-alpha stimulation. Levels of expression of inducible NO synthase (iNOS) mRNA and production of iNOS protein in response to LPS stimulation were similar in MT-null and control cells, as were levels of expression of arginase, which competes in arginine metabolism with iNOS. No notable changes were found in arginine uptake or in expression of cationic amino acid transporter 2 (a major arginine transporter in Mvarphi) between control and MT-null Mvarphi. The rate of conversion of [(14)C]-l-arginine to citrulline, which is formed with NO by the action of iNOS, was much lower in MT-null Mvarphi than in control cells. These results indicate that the reduced production of NO in MT-deficient Mvarphi is due mainly to reduced activity of iNOS. Thus, MT plays important roles in bactericidal activity, NO production, and arginine metabolism in activated Mvarphi.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号