首页 | 本学科首页   官方微博 | 高级检索  
     

基于多代竞争遗传算法的数值函数优化
引用本文:刘雅琴 王成 章鲁. 基于多代竞争遗传算法的数值函数优化[J]. 上海交通大学学报(医学版), 2005, 25(8): 809-811
作者姓名:刘雅琴 王成 章鲁
作者单位:上海第二医科大学基础医学院生物医学工程系,上海,200025;上海第二医科大学基础医学院生物医学工程系,上海,200025;上海第二医科大学基础医学院生物医学工程系,上海,200025
摘    要:目的 对标准遗传算法的过早收敛问题进行改进。方法保持种群的多样性,将上几代个体中的一部分与本代共同参与竞争,提出多代竞争遗传算法,通过理论分析和对数值函数优化证明该算法的有效性。结果推导出多代竞争遗传算法的模式定理,经验证明显优于标准遗传算法。结论多代竞争遗传算法有利于保持种群的多样性,避免了过早收敛。

关 键 词:遗传算法  模式定理  多代竞争遗传算法  函数优化
文章编号:0258-5898(2005)08-0809-03
收稿时间:2004-10-25
修稿时间:2005-03-16

Function Optimization Problems Based on Multi-Generation Competitive Genetic Algorithm
Liu YaQin;Wang Cheng;Zhang Lu. Function Optimization Problems Based on Multi-Generation Competitive Genetic Algorithm[J]. Journal of Shanghai Jiaotong University:Medical Science, 2005, 25(8): 809-811
Authors:Liu YaQin  Wang Cheng  Zhang Lu
Abstract:Objective To improve the prematurity of standard Genetic Algorithm. Methods In order to avoid prematurity, we kept the diversity of population, that was, some schemas of previous generation compete with schemas of present generation. Results In this paper, we present multi-generation competitive genetic algorithm and the schema theorem which were tested by theory analysis and applied practice. We took the De Jong testing functions to evaluate the performance of the multi-generation competitive genetic algorithm. Conclusion Multi-generation competitive genetic algorithm can avoid prematurity by keeping the diversity of population.
Keywords:genetic algorithm   schema theorem   multi-generation competitive genetic algorithm  function optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号