Predictive Optimization of Electrical Conductivity of Polycarbonate Composites at Different Concentrations of Carbon Nanotubes: A Valorization of Conductive Nanocomposite Theoretical Models |
| |
Authors: | Lakhdar Sidi Salah,Nassira Ouslimani,Mohamed Chouai,Yann Danlé e,Isabelle Huynen,Hammouche Aksas |
| |
Abstract: | Polycarbonate—carbon nanotube (PC-CNT) conductive composites containing CNT concentration covering 0.25–4.5 wt.% were prepared by melt blending extrusion. The alternating current (AC) conductivity of the composites has been investigated. The percolation threshold of the PC-CNT composites was theoretically determined using the classical theory of percolation followed by numerical analysis, quantifying the conductivity of PC-CNT at the critical volume CNT concentration. Different theoretical models like Bueche, McCullough and Mamunya have been applied to predict the AC conductivity of the composites using a hyperparameter optimization method. Through multiple series of the hyperparameter optimization process, it was found that McCullough and Mamunya theoretical models for electrical conductivity fit remarkably with our experimental results; the degree of chain branching and the aspect ratio are estimated to be 0.91 and 167 according to these models. The development of a new model based on a modified Sohi model is in good agreement with our data, with a coefficient of determination for an optimized design model. The conductivity is correlated to the electromagnetic absorption (EM) index showing a fine fit with Steffen–Boltzmann (SB) model, indicating the ultimate CNTs volume concentration for microwave absorption at the studied frequency range. |
| |
Keywords: | polycarbonate (PC) carbon nanotubes (CNTs) electrical conductivity hyperparameter optimization percolation microwave |
|
|