首页 | 本学科首页   官方微博 | 高级检索  
     


Inactivation of the infragranular striate cortex broadens orientation tuning of supragranular visual neurons in the cat
Authors:J. D. Allison  A. B. Bonds
Affiliation:(1) Department of Cell Biology, Medical Center North, C-2310, Vanderbilt University School of Medicine, 37232-2175 Nashville, TN, USA;(2) Department of Electrical Engineering, Vanderbilt University, 37232-2175 Nashville, TN, USA
Abstract:Intracortical inhibition is believed to enhance the orientation tuning of striate cortical neurons, but the origin of this inhibition is unclear. To examine the possible influence of ascending inhibitory projections from the infragranular layers of striate cortex on the orientation selectivity of neurons in the supragranular layers, we measured the spatiotemporal response properties of 32 supragranular neurons in the cat before, during, and after neural activity in the infragranular layers beneath the recorded cells was inactivated by iontophoretic administration of GABA. During GABA iontophoresis, the orientation tuning bandwidth of 15 (46.9%) supragranular neurons broadened as a result of increases in response amplitude to stimuli oriented about ±20° away from the preferred stimulus angle. The mean (±SD) baseline orientation tuning bandwidth (half width at half height) of these neurons was 13.08±2.3°. Their mean tuning bandwidth during inactivation of the infragranular layers increased to 19.59±2.54°, an increase of 49.7%. The mean percentage increase in orientation tuning bandwidth of the individual neurons was 47.4%. Four neurons exhibited symmetrical changes in their orientation tuning functions, while 11 neurons displayed asymmetrical changes. The change in form of the orientation tuning functions appeared to depend on the relative vertical alignment of the recorded neuron and the infragranular region of inactivation. Neurons located in close vertical register with the inactivated infragranular tissue exhibited symmetric changes in their orientation tuning functions. The neurons exhibiting asymmetric changes in their orientation tuning functions were located just outside the vertical register. Eight of these 11 neurons also demonstrated a mean shift of 6.67±5.77° in their preferred stimulus orientation. The magnitude of change in the orientation tuning functions increased as the delivery of GABA was prolonged. Responses returned to normal approximately 30 min after the delivery of GABA was discontinued. We conclude that inhibitory projections from neurons within the infragranular layers of striate cortex in cats can enhance the orientation selectivity of supragranular striate cortical neurons.
Keywords:Visual cortex  Orientation selectivity  GABA inhibition  Interlaminar connections  Cat
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号