首页 | 本学科首页   官方微博 | 高级检索  
     


Radiation surveillance using an unmanned aerial vehicle
Affiliation:1. STUK-Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881, Finland;2. Senya Ltd. Rekitie 7A, 00950 Helsinki, Finland;3. Patria Systems Oy, Naulakatu 3, FI-33100, Finland;1. Interface Analysis Centre, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK;2. National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK;3. Schools of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK;4. Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK;5. Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan;1. Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 3191195, Japan;2. OYO Corporation, 1-66-22 Miyahara-cho, Kita-ku, Saitama-shi, Saitama 3310812, Japan;3. NESIInc., 38 Shinko-cho, Hitachinaka, Ibaraki 3120005, Japan;4. Fukushima Remote Monitoring Group, Fukushima Environmental Safety Center, Japan Atomic Energy Agency, 45-169 Sukakeba, Kaihama-aza, Haramachi-ku, Minamisoma-shi 9750036, Japan;1. Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;2. Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;3. Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;1. Unitat de Física Mèdica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, ES-43201 Reus, Tarragona, Spain;2. Servei de Protecció Radiològica, Servei de Recursos Científics i Tècnics, Universitat Rovira i Virgili, ES-43007 Tarragona, Spain;1. Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2. Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;1. Interface Analysis Centre, HH Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK;2. National Nuclear Laboratory, Chadwick House, Warrington, WA3 6AE, UK;3. Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, 606-8501, Japan;4. School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK;5. Research Centre for Radwaste and Decommissioning, School of Earth, Atmospheric and Environmental Sciences, Williamson Building, University of Manchester, Manchester, M13 9PL, UK
Abstract:Radiation surveillance equipment was mounted in a small unmanned aerial vehicle. The equipment consists of a commercial CsI detector for count rate measurement and a specially designed sampling unit for airborne radioactive particles. Field and flight tests were performed for the CsI detector in the area where 137Cs fallout from the Chernobyl accident is 23–45 kBq m−2. A 3-GBq 137Cs point source could be detected at the altitude of 50 m using a flight speed of 70 km h−1 and data acquisition interval of 1 s. Respective response for 192Ir point source is 1 GBq. During the flight, the detector reacts fast to ambient external dose rate rise of 0.1 μSv h−1, which gives for the activity concentration of 131I less than 1 kBq m−3. Operation of the sampler equipped with different type of filters was investigated using wind-tunnel experiments and field tests with the aid of radon progeny. Air flow rate through the sampler is 0.2–0.7 m3 h−1 at a flight speed of 70 km h−1 depending on the filter type in question. The tests showed that the sampler is able to collect airborne radioactive particles. Minimum detectable concentration for transuranium nuclides, such as 239Pu, is of the order of 0.2 Bq m−3 or less when alpha spectrometry with no radiochemical sample processing is used for activity determination immediately after the flight. When a gamma-ray spectrometer is used, minimum detectable concentrations for several fission products such as 137Cs and 131I are of the order of 1 Bq m−3.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号