Abstract: | The pharmacological properties of labedipinedilol‐B {N‐[4‐[2‐hydroxy‐3‐(2‐methoxy‐1‐oxyethylaminobenzene) propoxy]‐benzyl]‐2,6‐dimethyl‐3,5‐dicarbomethoxy‐1,4‐dihydropyridine} were investigated in vivo and in vitro in comparison with labedipinedilol‐A. Intravenous labedipinedilol‐B (0.5, 1.0, and 3.0 mg kg–1), produced dose‐dependent hypotensive and bradycardia responses in pentobarbital‐anesthetized Wistar rats. Pretreatment with labedipinedilol‐B (1.0 mg kg–1, iv) also inhibited phenylephrine (10 μg kg–1)‐induced hypertensive and (–)isoproterenol (0.5 μg kg–1)‐induced tachycardia effects. In the isolated Wistar rat right and left atria and guinea pigs tracheal strips experiments, labedipinedilol‐B (10–7, 10–6, and 10–5 M) competitively antagonized the (–)isoproterenol‐induced positive chronotropic and inotropic effects and tracheal relaxation responses in a concentration‐dependent manner. The parallel shift to the right of the concentration–response curve of (–)isoproterenol suggested that labedipinedilol‐B was a β1/β2‐adrenoceptor competitive antagonist. Labedipinedilol‐B (10–7, 10–6, and 10–5 M) also prevented the rate‐increasing effects of increased extracellular Ca2+ (3.0–9.0 mM) in a concentration‐dependent manner. In the isolated rat aorta, labedipinedilol‐B (10–7, 10–6, and 10–5 M) competitively antagonized the CaCl2 and norepinephrine‐induced contractions with pKCa–1 and pA2 values of 8.02 ± 0.04 and 7.55 ± 0.05 in a concentration‐dependent manner. The parallel shift to the right of the concentration–response curves of norepinephrine suggested that labedipinedilol‐B was an α‐adrenoceptor competitive antagonist. Furthermore, labedipinedilol‐B, in an equal antagonist activity, inhibited norepinephrine‐induced phasic and tonic contraction. In the isolated rat aorta, labedipinedilol‐B also competitively antagonized CaCl2‐induced contractions and made the parallel shift to the right of the concentration–response curve of CaCl2. In cultured blood vessel smooth muscle cells (A7r5 cell lines), Bay K 8644‐induced intracellular calcium changes were decreased after application of labedipinedilol‐B, suggesting that the compound was a calcium channel blocker. The binding characteristics of labedipinedilol‐B were evaluated in [3H]CGP‐12177 binding to ventricle and lung and [3H]prazosin binding to brain membranes in rats. Labedipinedilol‐B also was evaluated in [3H]nitrendipine binding to brain membranes in rats. These results indicated that labedipinedilol‐B, similar to labedipinedilol‐A, has α‐adrenoceptor blocking, β‐adrenoceptor blocking, and calcium entry blocking activities in a single compound. We suggest that these two compounds represent a new generation of 1,4‐dihydropyridine‐type calcium channel blockers. Drug Dev. Res. 52:462–474, 2001. © 2001 Wiley‐Liss, Inc. |